Search results for "Chemical Bonding"

showing 8 items of 8 documents

A Simple Complex on the Verge of Breakdown: Isolation of the Elusive Cyanoformate Ion

2014

Cyanide Hitches a Ride Cyanide is a by-product of the biosynthesis of ethylene in plants and it has been somewhat puzzling how the ion is safely removed before it can shut down enzymatic pathways by coordination to catalytic iron centers. A proposed mechanism has implicated the cyanoformate ion—essentially, a weak adduct of cyanide and carbon dioxide—as the initial product, although its lifetime was uncertain. Murphy et al. (p. 75 ; see the Perspective by Alabugin and Mohamed ) crystallized this previously elusive adduct and found that its solution-phase stability varies inversely with the dielectric properties of the medium. The results bolster a picture in which the adduct shuttles the cy…

crystal structureEthyleneMagnetic Resonance SpectroscopyFormateskemiallinen sitoutuminenCyanideMineralogykiderakenneMedicinal chemistryIonCatalysisAdductchemistry.chemical_compoundsyanoformaattiX-Ray DiffractionCatalytic DomainNitrilesta116MultidisciplinaryAqueous solutionCyanidesMolecular StructureChemistrychemical bondingCarbon DioxideEthylenesThermodynamicsAmino Acid OxidoreductasescyanofrmateCrystallizationShut downScience
researchProduct

Mechanistic insights into the phosphoryl transfer reaction in cyclin-dependent kinase 2: a QM/MM study

2019

AbstractCyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results show that the base-assisted mechanism is preferred over the substrat…

Models MolecularComposite ParticlesProtein ConformationPhysical ChemistryBiochemistry01 natural sciencesSubstrate Specificitychemistry.chemical_compoundPhosphorylationPost-Translational ModificationFree Energy0303 health sciencesMultidisciplinarybiologyKinasePhysicsQChemical ReactionsRChemistryReaction DynamicsPhysical SciencesThermodynamicsMedicineProtonsResearch ArticleChemical ElementsAtomsStereochemistryScienceMolecular Dynamics Simulation010402 general chemistryMolecular mechanicsReactantsQM/MMStructure-Activity Relationship03 medical and health sciencesCyclin-dependent kinaseParticle PhysicsNuclear PhysicsNucleons030304 developmental biologyChemical BondingCyclin-Dependent Kinase 2Cyclin-dependent kinase 2Biology and Life SciencesProteinsActive siteHydrogen BondingTransition StateBond order0104 chemical sciencesOxygenModels Chemicalchemistrybiology.proteinQuantum TheoryAdenosine triphosphate
researchProduct

In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models

2016

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…

0301 basic medicineMolecular biologyPhysiologyMutantMyotonic dystrophyDruggabilitylcsh:Medicine01 natural sciencesBiochemistryPhysical ChemistryMyoblastschemistry.chemical_compoundAnabolic AgentsMedicaments--InteraccióAnimal CellsDrug DiscoveryMedicine and Health SciencesMBNL1Drosophila ProteinsMyotonic Dystrophylcsh:ScienceRNA structureConnective Tissue CellsMultidisciplinaryMolecular StructureOrganic CompoundsStem CellsPhysicsRNA-Binding ProteinsBiological activityPhenotypeClimbingMolecular Docking SimulationNucleic acidsChemistryDrosophila melanogasterBiochemistryGenetic DiseasesConnective TissueRNA splicingPhysical SciencesCellular TypesAnatomyLocomotion57 - BiologiaSignal TransductionResearch ArticleBiotechnologyHydrogen bondingcongenital hereditary and neonatal diseases and abnormalitiesIn silicoPrimary Cell CultureComputational biologyBiology010402 general chemistryMyotonic dystrophyMyotonin-Protein KinaseDrug interactionsSmall Molecule Libraries03 medical and health sciencesStructure-Activity RelationshipmedicineAnimalsHumansRNA MessengerEnllaços d'hidrogenClinical GeneticsChemical PhysicsBiology and life sciencesChemical BondingBiological Locomotionlcsh:ROrganic ChemistryEstructura molecularChemical CompoundsHydrogen BondingCell BiologyFibroblastsmedicine.disease0104 chemical sciencesBenzamidinesAlternative SplicingDisease Models AnimalMacromolecular structure analysis030104 developmental biologyPyrimidinesBiological TissuechemistrySmall MoleculesRNAlcsh:QTrinucleotide Repeat ExpansionMolecular structure
researchProduct

Optimizing density-functional simulations for two-dimensional metals

2022

Unlike covalent two-dimensional (2D) materials like graphene, 2D metals have non-layered structures due to their non-directional, metallic bonding. While experiments on 2D metals are still scarce and challenging, density-functional theory (DFT) provides an ideal approach to predict their basic properties and assist in their design. However, DFT methods have been rarely benchmarked against metallic bonding at low dimensions. Therefore, to identify optimal DFT attributes for a desired accuracy, we systematically benchmark exchange-correlation functionals from LDA to hybrids and basis sets from plane waves to local basis with different pseudopotentials. With 1D chain, 2D honeycomb, 2D square, …

Condensed Matter - Materials Sciencekemialliset sidoksetPhysics and Astronomy (miscellaneous)tiheyschemical bondingdensity of statesMaterials Science (cond-mat.mtrl-sci)FOS: Physical scienceselasticityGeneral Materials SciencekimmoisuusPhysical Review Materials
researchProduct

In silico identification and experimental validation of hits active against KPC-2 β-lactamase

2018

Bacterial resistance has become a worldwide concern, particularly after the emergence of resistant strains overproducing carbapenemases. Among these, the KPC-2 carbapenemase represents a significant clinical challenge, being characterized by a broad substrate spectrum that includes aminothiazoleoxime and cephalosporins such as cefotaxime. Moreover, strains harboring KPC-type β-lactamases are often reported as resistant to available β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam). Therefore, the identification of novel non β-lactam KPC-2 inhibitors is strongly necessary to maintain treatment options. This study explored novel, non-covalent inhibitors active against KPC-2, …

Genetics and Molecular Biology (all)Proteomics0301 basic medicineCefotaximeKlebsiella pneumoniaePathology and Laboratory MedicinePhysical ChemistryBiochemistryKlebsiella PneumoniaeDatabase and Informatics MethodsBiochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)AntibioticsKlebsiellaCatalytic DomainMedicine and Health Sciencespolycyclic compoundsDrug InteractionsCrystallographyMultidisciplinarybiologyAntimicrobialsOrganic CompoundsProteomic DatabasesChemistryPhysicsQRDrugsSulbactamCondensed Matter PhysicsBacterial PathogensChemistryBiochemistryMedical MicrobiologyPhysical SciencesCrystal StructureMedicinePathogensbeta-Lactamase InhibitorsResearch Articlemedicine.drugScienceIn silico030106 microbiologySulfonamideResearch and Analysis MethodsMicrobiologyMeropenemTazobactambeta-Lactamases03 medical and health sciencesBacterial ProteinsMicrobial ControlClavulanic acidmedicineSolid State PhysicsMicrobial PathogensPharmacologyLigand efficiencyChemical BondingBacteriaOrganic ChemistryChemical CompoundsOrganismsBiology and Life SciencesHydrogen Bondingbiochemical phenomena metabolism and nutritionbiology.organism_classificationbacterial infections and mycosesAmidesBiological Databases030104 developmental biologyAgricultural and Biological Sciences (all)
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Uranocenium: Synthesis, Structure, and Chemical Bonding

2019

Abstraction of iodide from [(η5 -C5 i Pr5 )2 UI] (1) produced the cationic uranium(III) metallocene [(η5 -C5 i Pr5 )2 U]+ (2) as a salt of [B(C6 F5 )4 ]- . The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands and a bending angle of 167.82° at uranium. Analysis of the bonding in 2 showed that the uranium 5f orbitals are strongly split and mixed with the ligand orbitals, thus leading to non-negligible covalent contributions to the bonding. Investigation of the dynamic magnetic properties of 2 revealed that the 5f covalency leads to partially quenched anisotropy and fast magnetic relaxation in zero applied magnetic field. Application of a magnetic field leads to domin…

Materials sciencemagneettiset ominaisuudetElectronic structureorganometalliyhdisteet010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundsymbols.namesakekemialliset sidoksetCyclopentadienyl complexkemiallinen synteesi010405 organic chemistryLigandRelaxation (NMR)chemical bondingGeneral MedicineGeneral Chemistrymetalloceneselectronic structure0104 chemical sciencesCrystallographychemistryChemical bonduraaniCovalent bondsymbolsRaman spectroscopyMetalloceneAngewandte Chemie International Edition
researchProduct

Isolation of a perfectly linear uranium(II) metallocene

2020

Reduction of the uranium(III) metallocene [(eta(5)-(C5Pr5)-Pr-i)(2)UI] (1) with potassium graphite produces the "second-generation" uranocene [(eta(5)-(C5Pr5)-Pr-i)(2)U] (2), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground-state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f(3) 6d(1). Appreciable covalent contributions to the metal-ligand bonds were determined from a computational study of 2, including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbi…

Materials sciencemagneettiset ominaisuudetchemistry.chemical_elementorganometalliyhdisteet010402 general chemistry01 natural sciencesElectron spectroscopyCatalysisuraniumchemistry.chemical_compoundkemialliset sidoksetUranoceneCyclopentadienyl complex010405 organic chemistrychemical bondingGeneral MedicineGeneral ChemistryUraniummetalloceneselectronic structure0104 chemical sciencesCrystallographychemistryUnpaired electronuraaniDensity functional theorymagnetic propertiesQD0146Valence electronMetallocene
researchProduct